The Random Paving Property for Uniformly Bounded Matrices

نویسنده

  • JOEL A. TROPP
چکیده

This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison–Singer problem. The result shows that every unitnorm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so that the restriction of the matrix to each block of coordinates has norm less than one half. The original proof of Bourgain and Tzafriri involves a long, delicate calculation. The new proof relies on the systematic use of symmetrization and (noncommutative) Khintchine inequalities to estimate the norms of some random matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Paving Property for Uniformly Bounded Matrices

Abstract. This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison–Singer problem. The result shows that every unitnorm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so th...

متن کامل

The Paving Property for Uniformly Bounded Matrices: a New Proof

Abstract. This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison–Singer problem. The result shows that every unitnorm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so th...

متن کامل

ar X iv : 1 10 6 . 11 51 v 1 [ m at h . ST ] 6 J un 2 01 1 Reconstruction from anisotropic random measurements ∗

Random matrices are widely used in sparse recovery problems, and the relevant properties of matrices with i.i.d. entries are well understood. The current paper discusses the recently introduced Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix, guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guaranteed by c...

متن کامل

Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling

This paper considers compressed sensing matrices and neighborliness of a centrally symmetric convex polytope generated by vectors ±X1, . . . ,±XN ∈ Rn, (N ≥ n). We introduce a class of random sampling matrices and show that they satisfy a restricted isometry property (RIP) with overwhelming probability. In particular, we prove that matrices with i.i.d. centered and variance 1 entries that satis...

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007